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Abstract

The complex eigenvalues of a flexible structure including a viscous damper are derived by solving the root locus of a

transfer function that is composed of very easily identifiable parameters: the static stiffness of the structure at the damper

location, the resonance frequencies of the undamped structure and the resonance frequencies of the structure in which the

damper is replaced by a rigid link. Approximate solutions are proposed for the complex eigenvalues and formulas are

derived for the maximum modal damping ratio and the optimal damping constant. The correctness of the formulas is

illustrated by numerical examples of a cantilever beam with attached viscous damper. Although approximate solutions

exist which are not restricted to the case of a single damper, these are only accurate when the difference between the

undamped and constrained eigensolution is sufficiently small, while the approximations obtained in the present paper are

accurate in a broader range without losing simplicity.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Improving the dynamic behavior of flexible structures with low inherent damping is a research topic that
has been given considerable attention in the last decades, especially in the fields of spacecraft dynamics [1] and
dynamics of buildings and bridges [2]. It has been shown that incorporation of viscous dampers in the
structure can be a very effective means of reducing unwanted vibrations [2]. From a design point of view, this
means two questions have to be answered: (I) what are good locations for placing the dampers in the structure
and (II) what are the optimal damping constants resulting in minimized vibrations.

In answering these questions, one starts generally from a discrete model of the structure, for example by
means of finite elements. When the excitation mechanisms are known, forced responses can be performed for
different locations and sizes of the dampers, hereby searching for an optimal configuration that minimizes
structural responses like for example displacements, accelerations or internal forces. An other criterium that is
often employed in the design of dampers consists of maximizing the damping level in specific vibration modes.
This is certainly interesting when the excitation mechanisms are not well understood and the problematic
modes are known.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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In both of the previously described approaches for designing dampers, the complex eigenvalues are required
and in the case of the forced response also the complex mode shapes have to be known. These can both be
obtained by solving the complex eigenvalue problem corresponding to free vibrations of the structure.
However, repeatedly solving this complex eigenproblem for different damper locations and different damping
constants can be very time consuming for structures with a large number of degrees of freedom. Therefore,
Main and Krenk [3] suggest an approximate solution that requires solving only two real-valued eigenproblems
for each damper location: the eigenproblem of the undamped structure and the eigenproblem of the structure
in which each damper is replaced by a rigid link, corresponding to a damping constant of, respectively, zero
and infinity. The solutions for intermediate values of the damping constant are approximated by an
interpolation between the solutions for these two limiting cases. An explicit form of the approximate solution
is obtained for the case the difference between the two solutions is sufficiently small, and an iterative scheme is
proposed for the case where this difference is larger. Similar approximate solutions have been derived for
various continuous structures such as a taut cable [4] and a simply supported beam [5]. Høgsberg and Krenk
[6] recently used this two-component representation technique to study active control algorithms for
collocated systems.

In this paper, an alternative approach is suggested to obtain the complex eigenvalues for the case where only
one damper is implemented in the structure. It also starts from the solutions of the two limiting eigenvalue
problems of the structure without and with locked damper, however, the root locus technique is applied to
obtain results for intermediate values of the damping constant. Approximate expressions are obtained for the
maximal attainable modal damping at a given damper location and the corresponding optimal damping
constant. The only parameters in these expressions are the stiffness of the structure at the damper location and
the resonance frequencies of the structure without and with locked damper. These parameters are easily
obtainable from any commercial finite element package that is able to perform static and modal analysis.
Besides, these parameters are also easily experimentally identifiable, making them very useful in practical
design. The correctness of the formulas is verified for two numerical examples: a cantilever Bernouilli–Euler
beam equipped with a translational viscous damper and a rotational viscous damper. Beam elements are
simple elements, representative for many real systems and are often used to investigate the dynamic behavior
of flexible structures with attached viscous dampers [5,7,8].

The formulas for the maximum modal damping and optimal damping constant derived here are similar to
those derived by Preumont [1] for active control of structures with collocated sensors and actuators applying
integral force feedback (IFF), i.e. the position is controlled as the integral of the force, which in fact is
equivalent to viscous damping. Krenk [4] and Main and Jones [9] derived similar formulas for the special case
of a taut cable with a viscous damper attached near the end. Main and Krenk [3] found approximate solutions
for the damping constant that maximizes the decay rate of a general discrete structure with viscous dampers,
which is only slightly different from the damping constant that maximizes the modal damping ratio.
Previously published research results are compared with the results of this paper in Section 5.

2. Transfer function for collocated systems

In this section, the transfer function between the force f exerted on a flexible structure and its collocated
displacement x is derived. Collocated means that the displacement at the location of the applied force is
considered (Fig. 1a). This transfer function will be used in the subsequent section to find the eigenvalues of a
viscously damped structure by solving a root locus problem. First the eigenvalues of an undamped structure
are derived, which are used to construct the transfer function.

2.1. Eigenvalues of an undamped structure

The free response of an undamped discrete linear structure with n degrees of freedom is governed by the
equations of motion

M€qþ Kq ¼ 0, (1)

whereM and K are the n� n mass and stiffness matrices and q is the n� 1 vector of generalized displacements.
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Fig. 1. (a) Cantilever beam with applied force and collocated displacement; (b) mode shape of cantilever beam with additional restraint;

(c) cantilever beam with attached viscous damper.
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Fig. 2. Three mass system excited by an actuator acting on (a) relative motion and (b) absolute motion.
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Assuming solutions of the form q ¼ uest, yields the eigenvalue problem

ðMs2 þ KÞui ¼ 0. (2)

Non-trivial solutions are found by solving the characteristic equation

detðMs2 þ KÞ ¼ 0, (3)

where the eigenvalues s ¼ �jOi are purely imaginary in case of an undamped structure, Oi are the resonance
frequencies of the structure and ui are the corresponding modeshapes.

2.2. Transfer function for collocated systems

When an undamped structure is excited by a single force, the equations of motion can be written as follows:

M€qþ Kq ¼ bf , (4)

where b is the n� 1 influence vector, which indicates the location and orientation of the point of excitation in
the structure. For example, the influence vector of the three mass system of Fig. 2 is b ¼ ½0 � 1 1�T in the case
where the actuator forces a relative motion of the masses, while it is b ¼ ½0 1 0�T where the actuator acts on
absolute motion.

Taking the Laplace transform of Eq. (4) and assuming zero initial conditions results in

ðMs2 þ KÞQðsÞ ¼ bF ðsÞ. (5)

The displacement x that is collocated with the applied force f is related to the vector of generalized
displacements q by the influence vector b as

X ðsÞ ¼ bTQðsÞ. (6)

Combination of Eqs. (5) and (6) gives the transfer function GðsÞ between the force f and the collocated
displacement x:

X ðsÞ

F ðsÞ
¼ bTðMs2 þ KÞ�1b ¼ GðsÞ. (7)



ARTICLE IN PRESS
K. Engelen et al. / Journal of Sound and Vibration 304 (2007) 845–862848
The inverse is written as a function of the determinant and the adjoint, yielding

GðsÞ ¼ bT
adjðMs2 þ KÞ

detðMs2 þ KÞ
b. (8)

The determinant of the denominator is exactly the same determinant that has to be solved for finding the non-
trivial solutions of the free response of the undamped structure (Eq. (3)). It can therefore be expressed as

detðMs2 þ KÞ ¼ g1

Yn

i¼1

ðs2 þ O2
i Þ, (9)

where Oi are the resonance frequencies of the undamped structure and g1 is a constant.
It can be shown that the numerator of Eq. (8) can be written as

bTadjðMs2 þ KÞb ¼ detðMcs2 þ KcÞ, (10)

where Mc and Kc are the mass and stiffness matrices of the constrained structure where the actuator has been
replaced by a rigid link. This is easily verified in the case an absolute actuator is acting on the structure. For
example, for the three mass system (Fig. 2b), the numerator of Eq. (8) equals

bTadjðMs2 þ KÞb ¼ detðM2;2s
2 þ K2;2Þ, (11)

where M2;2 and K2;2 are the mass and stiffness matrices of the original structure from which the 2nd row and
the 2nd column have been removed. This corresponds to the system with an additional constraint at the degree
of freedom the damper acts on.

For the case of a relative actuator this relation might be less clear at first sight, however, we can always
change variables such that one of the variables corresponds to the actuator displacement. For the three mass
system of Fig. 2a we can change variables for example to q ¼ ½q1 q2 q3 � q2�

T, whereby b ¼ ½0 0 1�T and the
numerator of Eq. (8) equals

bTadjðMs2 þ KÞb ¼ detðM3;3s
2 þ K3;3Þ, (12)

where M3;3 and K3;3 are the mass and stiffness matrices of the original structure from which the 3rd row and
the 3rd column have been removed. Again, this corresponds to a system that is equivalent to the structure for
which the actuator is replaced by a rigid link.

So, an equivalent expression as in Eq. (9) can be obtained for the determinant

detðMcs
2 þ KcÞ ¼ g2

Yn�1
i¼1

ðs2 þ o2
i Þ, (13)

where oi are the resonance frequencies of the constrained structure, also called anti-resonance frequencies
(Fig. 1b) and g2 is a constant.

By combination of Eqs. (8)–(10) and (13), the transfer function of the collocated system can be rewritten as

GðsÞ ¼
g2

g1

Qn�1
i¼1 ðs

2 þ o2
i ÞQn

i¼1ðs
2 þ O2

i Þ
. (14)

In system theory, it is a common practice to express transfer functions in this form, in terms of resonance and
anti-resonance frequencies [1]. The gain of this transfer function is deduced from the static stiffness of the
structure at the location of the actuator k, by substitution of s ¼ 0 in Eq. (14), which gives

Gð0Þ ¼
X ð0Þ

F ð0Þ
¼

1

k
¼

g2

g1

Qn�1
i¼1 ðo

2
i ÞQn

i¼1ðO
2
i Þ

(15)

such that the transfer function finally reads

GðsÞ ¼
1

k

Qn
i¼1 O

2
iQn�1

i¼1 o
2
i

Qn�1
i¼1 ðs

2 þ o2
i ÞQn

i¼1ðs
2 þ O2

i Þ
, (16)
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where k can be derived from the stiffness matrix K by substitution of s ¼ 0 in Eq. (7):

k ¼ ðbTK�1bÞ�1. (17)

3. Eigenvalues of a structure with a single viscous damper

In this section, the possibilities of obtaining the eigenvalues of a structure including a viscous damper are
discussed. First, the classical approach is repeated, where solutions are found by solving a quadratic
eigenvalue problem. Next it is shown how the eigenvalues can be derived by solving a root locus problem,
which is computationally less time consuming. Moreover, the transfer function from which the root locus is
computed is composed of parameters that are easily obtainable from any commercial finite element package
that offers the opportunity to perform static and modal analysis. The stiffness and mass matrices, required for
the classical approach, are not available in all finite element packages. Finally, simple approximate solutions
are proposed, which are very useful in the design of dampers.

3.1. Quadratic eigenvalue problem

The force exerted by a viscous damper is proportional to the velocity of the piston, in a direction opposite to
the piston motion

f ¼ �c _x, (18)

where c is the damping constant.
The free response of a structure including a viscous damper (Fig. 1c) is governed by the equations of

motion

M€qþ C_qþ Kq ¼ 0, (19)

where C ¼ cbbT is the damping matrix. Non-trivial solutions are found by solving the quadratic eigenvalue
problem

ðMs2 þ Csþ KÞu ¼ 0, (20)

where the eigenvalues are generally complex for a damped structure. They are typically written in
the form

s ¼ on;ið�xi � j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2i

q
Þ, (21)

where on;i is the modulus of the ith eigenvalue and xi is the modal damping ratio.

3.2. Complex eigenvalues by solving root locus problem

Taking the Laplace transform of Eq. (18) and assuming zero initial conditions gives

F ðsÞ ¼ �csX ðsÞ. (22)

Combination of Eqs. (7) and (22) results in the closed-loop system of the structure with attached viscous
damper

1þ csGðsÞ ¼ 0. (23)

From this equation it is clear that the root locus of sGðsÞ shows the effect of changing the damping constant on
the poles of the structure with attached viscous damper. Typical examples of such root locus plots are shown
in Fig. 3. It is seen that the poles and zeros alternate along the imaginary axis, which is characteristic for an
undamped collocated system [1]. It should be clear that in contrast to the resonance frequencies, the values of
the anti-resonance frequencies do depend on the location of the damper in the structure and there is always
exactly one anti-resonance between two consecutive resonances. For zero damping constant, the closed-loop
poles coincide with the undamped resonance frequencies of the structure. Now, increasing the damping
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Fig. 3. Typical root locus plots of an undamped discrete structure (degrees of freedom n43) with attached viscous damper for varying

damping constant c. (Only the upper half of the s-plane is shown, the diagram is symmetrical with respect to the real axis.)
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constant initially increases the modal damping, reaching a maximum value for a particular value of c. In case
the mode is critically damped at this point, this mode shall typically remain critically damped by further
increasing c, as can be seen for example in Fig. 3b for the second mode. For all the other cases shown in Fig. 3
further increase of c from its optimal value decreases the modal damping and finally it goes to zero for an
infinite damping constant. The closed loop poles then coincide with the anti-resonance frequencies of the
structure and the damper acts like a support.

Because a viscous damper can only dissipate energy, the branches of the root-locus diagram are all
contained in the left half-plane. The form of the root locus diagram of Fig. 3a is typical for situations such as
an absolute damper located near the support of a structure, or a relative damper incorporated in the structure.
Here, the anti-resonance frequencies differ only slightly from the resonance frequencies and moderate values
of modal damping are achieved for the optimal damping constant. As will be seen in the numerical example of
a cantilever beam with attached translational viscous damper, in some cases it is possible to achieve critical
damping for a mode, as can be seen for example in Fig. 3b for the second mode. Fig. 3c gives an example of a
root locus diagram where the third pole is attracted by the second zero, which is very close to this pole. Hereby
the branch of the second mode goes to the third zero. It is clearly seen in these examples that the amount of
achievable damping is small for poles that have a zero in the near neighborhood and gets larger when they are
more separated. When a zero coincides with a pole, the mode is uncontrollable for the corresponding damper
location.
3.3. Approximate solution by solving reduced root locus problem

For a given damper location, the exact complex eigenvalues for different values of c are obtained by solving
the quadratic eigenvalue problem defined by Eq. (20) for all the values of c. Alternatively, they can be obtained
by first solving the two real eigenvalue problems of the undamped structure without and with locked damper
and then computing the root locus of sGðsÞ, which is defined by Eq. (23). Although the second method is
generally faster than the first method, even this can be computationally time consuming, certainly when the
number of degrees of freedom is large. However, solving the root locus for sGðsÞ with all the poles and zeros is
often unnecessary, because mostly we are only interested in the first few modes, while poles and zeros that are
far away from the branch of interest have a negligible influence on this branch. By computing the root locus of
sGpðsÞ, where

GpðsÞ ¼
1

k

Yp

i¼1

O2
i ðs

2 þ o2
i Þ

o2
i ðs

2 þ O2
i Þ

(24)

it will be generally sufficient to choose p only a few numbers larger than the number of the mode of interest k

to obtain a very good approximation of the exact eigenvalues. This will be demonstrated by numerical
examples in Section 4.
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3.4. Approximating formulas for the optimal damping

In this section, approximating formulas for the optimal damping constant and maximum modal damping
ratio are derived. These are very useful in the design of dampers.

From the knowledge of the values of the poles and zeros, it is not trivial to predict whether a pole will be
critically damped, or attracted to one of the zeros. However, it can be stated that it is most probable that a
pole will be attracted by the nearest zero. Certainly when the distance is small compared to the other poles and
zeros, this probability is large. Because the poles and zeros alternate on the imaginary axis, it should be clear
that for the pole that coincides with the kth resonance frequency Ok, the nearest zero is the one that coincides
with either the subsequent anti-resonance frequency ok, or the previous anti-resonance frequency ok�1 (when
ka1). Because the maximal distance that a zero can be removed from a pole is determined by the distance of
this pole to the next (or previous) pole, the closeness of a zero to a pole will be defined here as a fraction of this
maximal distance. Therefore, we define

�k1 ¼
jOk � okj

jOk � Okþ1j
(25)

as the relative distance of the kth pole to the subsequent zero compared to the distance of this pole to the
subsequent pole. Similarly we define

�k2 ¼
jOk � ok�1j

jOk � Ok�1j
(26)

as the relative distance of the kth pole to the previous zero compared to the distance of this pole to the
previous pole.

Now, two cases can be considered, depending on which of the two distances �k1 or �k2 is smallest. If the
distance is sufficiently small and the distance to all the other poles and zeros is large, it will be shown that for
both cases approximate values for the eigenvalues can be obtained by solving a reduced root locus problem
where only the factors involving the kth pole and the kth or ðk � 1Þth zero are retained. From this reduced
root locus problem, approximate values for the maximum modal damping and the optimal damping constant
can be derived.

3.4.1. Case 1: �k1p�k2

If we assume that the distance of jOk to jok is small compared to the distance to all the other poles and
zeros, then Eq. (16) can be simplified in the vicinity of jOk as follows:

GðsÞjs�jOk
�

1

kk;k

ðs2 þ o2
kÞ

ðs2 þ O2
kÞ
¼ H1ðsÞ, (27)

with

kp;z ¼ k
Qz

i¼1 o
2
iQp

i¼1 O
2
i

. (28)

This result is obtained by replacing the factors ðs2 þ w2Þ where w ¼ O1; . . . ;Ok�1 and w ¼ o1; . . . ;ok�1 by s2

and replacing the factors ðs2 þ w2Þ where w ¼ Okþ1; . . . ;On and w ¼ okþ1; . . . ;on�1 by w2.
Substitution of Eq. (27) in Eq. (23) gives

1þ csH1ðsÞ ¼ 1þ
cs

kk;k

ðs2 þ o2
kÞ

ðs2 þ O2
kÞ
¼ 0 (29)

resulting in typical root locus plots for the individual eigenmodes as in Fig. 4a. This root locus plot can be
derived from the root locus plots of Fig. 3 by moving all the poles and zeros that are larger than jok to infinity
and all the poles and zeros that are smaller than jOk to the origin.

For each eigenmode, there is an optimal value for c that results in maximum modal damping. By
substitution of Eq. (21) in Eq. (29), differentiating it with respect to c and assuming that qxi=qc ¼ 0, the
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maximum modal damping and the corresponding optimal damping constant are found:

xmax
k ¼

ok � Ok

2Ok

(30)

and

c
opt
k ¼ kk;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ok=ok

p
ok

. (31)

The maximum modal damping is proportional to the relative spacing of the resonance frequency of the
undamped structure and the resonance frequency of the structure with locked damper. This means that the
problem of finding a good damper location can be reduced to the problem of finding a location for a rigid link
that results in the largest possible increase of the resonance frequency. The importance of inducing such
frequency shifts has been demonstrated before for active devices controlled by the IFF algorithm [1], for a taut
cable with attached viscous damper [4,9] and for a general discrete structure including viscous dampers [3]. A
comparison with the results obtained in this paper is made in Section 5.

3.4.2. Case 2: �k14�k2 ðka1Þ
If we assume that the distance of jOk to jok�1 is small compared to the distance to all the other poles and

zeros, then Eq. (16) can be simplified in the vicinity of jOk as follows:

GðsÞjs�jOk
�

1

kk;k�1

ðs2 þ o2
k�1Þ

s2ðs2 þ O2
kÞ
¼ H2ðsÞ. (32)

This result is obtained by replacing the factors ðs2 þ w2Þ where w ¼ O1; . . . ;Ok�1 and w ¼ o1; . . . ;ok�2 by s2

and replacing the factors ðs2 þ w2Þ where w ¼ Okþ1; . . . ;On and w ¼ ok; . . . ;on�1 by w2.
Substitution of Eq. (32) in Eq. (23) gives

1þ csH2ðsÞ ¼ 1þ
c

kk;k�1

ðs2 þ o2
k�1Þ

sðs2 þ O2
kÞ
¼ 0 (33)

resulting in typical root locus plots for the individual eigenmodes as in Fig. 4b. For each eigenmode, the
maximum modal damping and optimal damping constant are

xmax
k ¼

Ok � ok�1

2ok�1
(34)

and

c
opt
k ¼ kk;k�1Ok

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ok=ok�1

p
. (35)

Note that these formulas are very similar to the formulas of case 1.

3.5. Explicit approximations

An explicit approximate solution for the damping ratio as a function of the damping constant can be useful
in practical design situations, because very often suboptimal damping constants are used for reasons of
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economy. Such explicit approximations are derived in this section for the two cases considered in the previous
section, in a similar way as in Ref. [3].

3.5.1. Case 1: �k1p�k2

Eq. (29) can be rearranged as follows

ðs2 þ O2
kÞ

ðO2
k � o2

kÞ
¼

cs=kk;k

1þ cs=kk;k
. (36)

Now, small perturbations of the resonance frequencies are assumed:

s ¼ jOk þ d1; jd1j � Ok,

ok ¼ Ok þ d2; jd2j � Ok, (37)

whereby the numerator and the denominator of the left-hand side of Eq. (36) can be approximated by

s2 þ O2
k ’ 2jOkðs� jOkÞ,

O2
k � o2

k ’ 2OkðOk � okÞ. (38)

Substituting these approximations in Eq. (36) and assuming that s ¼ jok in the right-hand side of Eq. (36)
gives an explicit approximate solution for the eigenvalues

s ¼ jOk þ ðOk � okÞ
Zk

1þ jZk

, (39)

where the non-dimensional damping constant Zk is defined by

Zk ¼
cok

kk;k
. (40)

Eq. (39) is the same as the explicit approximate solution obtained by Main and Krenk [3], only the value of Zk

is different. Krenk derived previously explicit approximations in the same form for the special case of a taut
cable [4] and a beam with rotational viscous dampers at the end [5].

An explicit equation for the damping ratio can be deduced from Eq. (39) by dividing the negative real part
of the eigenvalue by its absolute value:

xk ¼
�ReðsÞ

jsj
¼

ðok � OkÞZkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ2ko

2
k þ O2

kÞð1þ Z2kÞ
q . (41)

3.5.2. Case 2: �k14�k2 ðka1Þ
Explicit approximating solutions can be derived in a similar way as for case 1. This results in equations of

exactly the same form as Eq. (39) and Eq. (41), only ok should be replaced by ok�1 and Zk is defined by

Zk ¼
c

kk;k�1Ok

. (42)

4. Cantilever beam example

The correctness of the foregoing approximate solutions of the eigenvalues is verified by means of numerical
examples for a cantilever Bernouilli–Euler beam of length l with a viscous damper attached at a distance a

from the clamping point, as depicted in Fig. 1c. The quadratic eigenvalue problem Eq. (20) for a beam with
mass per unit length m and bending stiffness EI, discretizated by n finite elements is expressed in non-
dimensional form as

ðMb ~s
2 þ ~c bbT ~sþ KbÞu ¼ 0, (43)

where ~s ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml4=EI

q
are the non-dimensional complex eigenvalues, u ¼ ½n1 y1 � � � nn yn�

T are the
corresponding modeshapes consisting of one translational degree of freedom nk and one rotational degree
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of freedom yk for each node k and ~c ¼ cl=
ffiffiffiffiffiffiffiffiffiffi
mEI
p

is the non-dimensional damping constant. The stiffness and
mass matrices Kb and Mb are given in Appendix A. The number of beam elements is chosen 50 for the
following numerical examples, resulting in a total of 100 degrees of freedom. Hereby the first fifteen
eigenvalues are converged within an error of 0.1% of their asymptotic values.

Two cases are considered for this numerical example: a beam with a damper acting on the translational
degrees of freedom n and on the rotational degrees of freedom y.

4.1. Cantilever beam with translational viscous damper

The exact solution of the modal damping ratio is compared to the approximate solutions in Fig. 5 for the
first three modes of a cantilever with a translational damper located at a=l ¼ 0:06 and 0.2. It is seen that the
solutions obtained by solving the root locus of sGpðsÞ where GpðsÞ is defined by Eq. (24) are visibly
indistinguishable from the exact solution for all cases when only three extra pole-zero pairs are considered
above the pole-zero pair corresponding to the mode of interest.

Fig. 5 also shows explicit approximations defined by Eq. (41). It is clear that these are very accurate when
the difference in eigenvalues between the undamped case and the constrained case are small, which is true for
small values of a=l. For larger values of a=l the accuracy of the explicit approximations reduces.

Also plotted in Fig. 5 are the the solutions for the root locus of sH1ðsÞ, defined by Eq. (29). The
optimum of these curves corresponds to the approximating formulas for the maximum modal damping
(Eq. (30)) and the optimal damping constant (Eq. (31)). The equations off case 1 are used here, because
for all three modes the subsequent zeros are closer to the corresponding pole than the previous zeros for a
damper located at a=l ¼ 0:06 and 0.2, as can be seen in Fig. 6a. The approximations are very good for
all cases, except for the case of Fig. 5f. This can be explained by the fact that the closest zero is relatively
far away from the pole for this case, which seems to be critically damped for values of c larger than a certain
critical value.
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Computation of the exact and approximate solutions of the eigenvalues is repeated for different values of
the damper location a=l. The maximum modal damping ratios obtained by the approximating formulas for
case 1 (Eq. (30)) and case 2 (Eq. (34)) are compared with the exact optimal values in Fig. 7. It is seen that if the
closest zero is located within a margin of 45% of its maximal possible distance, the approximations are very
good (this situation is indicated by a marker that is filled black in Fig. 7). Over the larger part of the beam,
good approximations are found, except for the regions where the modes are critically damped. It should be
noted here, that the root locus diagram for a cantilever beam with a translational damper has the form
depicted by Fig. 3b. There is always one mode that is critically damped, while modes with a higher mode
number fulfill the condition of case 2 and modes with a lower mode number fulfill the condition of case 1. The
number of the mode that is critically damped increases with a decreasing value of a=l.

The exact optimal values of the damping constant are compared to the approximations for case 1 and case 2
by, respectively, Eq. (31) and Eq. (35) in Fig. 8. For damper locations where a mode can be critically damped,
the minimal value of c for which critical damping is achieved is plotted here. As for the prediction of the
optimal damping constant, it is seen that when the closest zero is located within a relative distance of 0:45
compared to the distance of the next (or previous) pole, the difference between the approximate damping
constant and the exact value is very small. The largest differences are visible at locations where the maximum
modal damping approaches zero, thus the least interesting regions. And even here, the maximal difference is
smaller than 2 dB, which coincides with a factor 1.26. Because of the typical robust character of the modal
damping versus the damping constant at the optimal point, as illustrated for example in Fig. 5, a difference of
this magnitude results in a modal damping ratio that is very close to its optimal value. Note that if no
restriction would be made on the allowed relative distance of the considered pole and zero, the prediction of
the optimal damping constant would be good over the entire range of the beam length, even in regions where
critical damping is achieved. The error on the approximate value of the damping constant for the case the
formulas of the closest zero are used, is smaller than 2 dB over the entire beam length.

4.2. Cantilever beam with rotational viscous damper

The same calculations are repeated here for a cantilever beam with attached absolute rotational viscous
damper. In contrast to the previous example, the subsequent zeros are always closer here than the previous
zeros, as shown in Fig. 6b. The root locus plots all have the form of Fig. 3a.

As depicted in Fig. 9, the approximate values of the maximum modal damping are in very good agreement
with the exact values, except for a small region at the end of the beam for the second and third mode. For this
example too, a good approximation is guaranteed when the distance of the closest zero to the pole is smaller
than 45% of the distance to the next (or previous) pole. This can also be concluded for the prediction of the
optimal damping constant (Fig. 10). The largest difference in the region at the end of the beam for mode two
and three is smaller than 3 dB, which coincides with a factor 1.41. Again in these regions the maximum modal
damping approaches zero. And again the prediction of the optimal damping constant would be good over the
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entire beam length if no restriction would be made on the allowed relative distance of the considered pole and
zero. So, actually the results of this example confirm the results of the previous example.

5. Comparison with previous research

The approximate solutions for the complex eigenvalues and the formulas for the optimal damping are very
similar to results obtained in the work of Preumont [1] and Main and Krenk [3]. In this paper however, an
alternate approach is used, which leads to new insights. A comparison is made in this section.

The most striking difference is that this paper presents two approximations, depending on whether the root
locus terminates at the kth or the ðk � 1Þth anti-resonance frequency, while in Refs. [1,3] only one case is
considered, i.e. the case where the root locus terminates at the kth anti-resonance frequency. On the other
hand, it should be clear that the method represented in this paper is restricted to a single damper, while the
works of Preumont [1] and Main and Krenk [3] propose solutions where multiple devices are used. Moreover,
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in contrast to Ref. [3], no solution for obtaining the modeshapes is presented in this paper. Whereas these are
obviously the most remarkable differences, the discussion below reveals some other important differences.

Preumont [1] investigated the effect of active devices controlled with the integral force feedback control
algorithm, which is equivalent to viscous damping. By using a diagonalization technique, Preumont found
equations with exactly the same form as Eq. (29)1 for a truss structure with piezoelectric actuators (Eqs. (5.38)
and (13.31) in Ref. [1]) and tendon control of cable structures with active devices (Eq. (14.14) in Ref. [1]). The
equations have exactly the same form, only kk;k is replaced in Ref. [1] by, respectively, the stiffness of the active
struts and the stiffness of the cables for the two studied cases. Very important is that the approximations
obtained in Ref. [1] are only valid for the special case where a series connection of a spring and a damper is
1The equations of Ref. [1] are equivalent to Eq. (29) and not Eq. (33). The usage of the symbols ok and Ok is reversed here in

comparison with Ref. [1].
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included in the structure, while the approximations obtained in the present paper are valid for the general case
where a damper is included in the structure. According to the authors it is not possible to use the same
diagonalization technique as in Ref. [1] to obtain similar approximations for the general case.

Now, let us consider the example of a cantilever beam with a cable attached at a relative distance a=l from
the clamping point. The cable pre-tension is T0 and a damper is placed between the cable and the support as
depicted in Fig. 11a. As in Section 14.5 of Ref. [1], the dynamics of the cable are neglected such that the cable
behaves like a bar with stiffness kc. The approximate formulas for the maximum modal damping ratio derived
by Preumont (Eq. (14.15)) are exactly the same as the formulas obtained in the present paper (Eq. (30)).
However, the corresponding optimal damping constant is different. Preumont suggests a value of

c
opt
k ¼ kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ok=ok

p
ok

, (44)

where kc is the cable stiffness. It should be clear that this value is only correct when kc is smaller than
the stiffness of the beam at the attachment point of the cable kb. This is confirmed by the graph of Fig. 11b,
which compares the optimal damping constant obtained from Eq. (44) with the exact value for different
values of the cable stiffness. If we compare the exact value with the optimal damping constant obtained in the
present paper (Eq. (31)), we can see that there is a very good agreement, even for values of kc that are larger
than kb. For the examples considered in Ref. [1], the condition kcokb is satisfied, such that Eq. (44) is
applicable. If for an other problem this would not be the case, the approximations of the present paper should
be used.

While both in the present paper and in the work of Preumont [1] the problem is treated from a control point
of view, Main and Krenk [3] used a different approach, where an approximate solution to the complex
eigenproblem was obtained by assuming a linear interpolation between the solutions of the undamped
eigenproblem and the constrained eigenproblem with rigid links at the dampers. This resulted in a quartic
equation (Eq. (28) in Ref. [3]) which can be solved iteratively. This equation was further simplified by
assuming small perturbations of the eigenfrequencies, leading to a cubic equation (Eq. (38) in Ref. [3]) with
exactly the same form as Eq. (29) of this paper, except that kk;k is replaced in this reference by ðo2

k �

O2
kÞ=ðb

TukÞ
2 for the case of a single damper, where uk is the mass normalized modeshape of the kth undamped

eigenmode. The value of kk;k is not exactly the same as the value of ðo2
k � O2

kÞ=ðb
TukÞ

2. These values influence
the scaling factor of the damping constant, so the prediction of the optimal damping constant is different with
both values. Fig.12 shows that the difference is small for the numerical examples of the cantilever beam in the
region of interest, which is the region where the kth anti-resonance frequency is relatively close to the kth
resonance frequency. So, the approximate solutions are similar, but a formulation in terms the static stiffness
at the damper location might be preferred over a formulation in terms of the mass normalized modeshape. The
static stiffness is easily obtainable from most commercial finite element software packages and is also easily
experimentally identifiable. Certainly when damping is introduced in the structure by incorporating a hinge in
the structure and placing a spring and damper in parallel at the created degree of freedom, a representation of
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results in terms of the static stiffness is interesting, since the static stiffness is equal to the spring stiffness in
that case. Damping is introduced in this way for example in spray boom structures [10].

The explicit expression (39) is derived here in an equivalent way as in Ref. [3]. However, formulas for the
optimal damping are not obtained from this explicit expression as given in Ref. [3]. They are derived here
directly from the more accurate Eq. (29), in a similar way as in Ref. [1]. The optimum of the explicit expression
corresponds to:

Zk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ok=ok

p
; xk ¼

ok � Ok

ok þ Ok

. (45)

It is shown in Figs. 13 and 14 that the approximations corresponding to Eq. (45) are only accurate for small
values of a=l. This is explained by the fact that the explicit expression was derived subject to assumptions of
small perturbations of the eigenfrequencies. Judging from the location of the poles and zeros in Fig. 6, this
assumption is only valid for small values of a=l. For larger values of a=l the assumption of small perturbations
is clearly violated, such that the approximations are compared here outside their range of applicability. In fact,
Main and Krenk [3] suggested to optimize the decay rate xkon;k of the explicit expression instead of the modal
damping ratio. The maximum decay rate coincides with the values:

Zk ¼ 1; xkon;k ¼
ok � Ok

2
; xk ¼

ok � Okffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2
k þ O2

k

q . (46)

However, from Figs. 13 and 14 it is clear that the values which maximize the decay rate are only slightly
different from the values which maximize the modal damping ratio, certainly for small values of a=l. Now, the
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formulas for the optimal damping derived in the present paper (Eqs. (30)–(31)) are obtained directly from
Eq. (29), which is more accurate than the explicit expression (39). This explains why the new approximations
are accurate over a broader range, as illustrated in Figs. 13 and 14.
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The quartic equation derived by Main and Krenk (Eq. (28) in Ref. [3]) can be solved iteratively to obtain
solutions for the complex eigenvalues with a better accuracy than those obtained from the explicit expression.
Fig. 15a shows that the iterative scheme converges to the exact solution as long as the root-locus is of the form
of Fig. 3a, i.e. the poles are attracted by the subsequent zeros. In case a pole is attracted by the previous zero,
or critical damping is achieved, the iterative scheme no longer converges to the exact solution, as depicted in
Figs. 15b and c, while the approximate solution with the reduced root locus represented in Section 3.3 does
converge to the exact solution.

6. Conclusion

The complex eigenvalues of a flexible structure including a viscous damper are derived by solving the root
locus of a transfer function that is composed of easily identifiable parameters: the static stiffness of the
structure at the damper location, the resonance frequencies of the undamped structure and the resonance
frequencies of the structure in which the damper is replaced by a rigid link. Exact solutions are obtained by
taking all the resonance frequencies and anti-resonance frequencies into account. Since for structures with a
large number of degrees of freedom computation time can be large, an approximate solution is proposed
where only a limited number (p) of resonance frequencies and anti-resonance frequencies are considered. For
numerical examples of a cantilever beam with attached viscous damper, it was shown that taking p ¼ k þ 3,
where k is the mode number of the mode of interest, is sufficient to obtain a good approximation.

Approximating formulas are derived for the maximum modal damping ratio and the corresponding optimal
damping constant. For a given mode, the maximal attainable damping ratio is proportional to the relative
spacing of the resonance frequency of the undamped structure and the closest resonance frequency of the
structure with locked damper. This means that the problem of finding a good damper location can be reduced
to the problem of finding a location for a rigid link that results in the largest deviation of the closest resonance
frequency. This is an extension to the classical statement that achievable damping is proportional to the
induced frequency shift in the sense that the closest anti-resonance frequency is taken into account and not
only the subsequent anti-resonance frequency.

The correctness of the predicted value of the maximum modal damping ratio for the kth mode can be
checked by computing the relative distance of the kth resonance frequency to the closest anti-resonance
frequency (�k1 or �k2). This value should be sufficiently small to ensure a good approximation. For the
considered numerical examples it is seen that a value smaller than 0.45 is sufficient. In fact this means that a
good prediction of the modal damping ratio is only ensured when the achievable amount of damping is
limited. This may seem contradictory, but in many cases it is not possible to obtain large damping ratios,
because of practical considerations. This is for example the case for damping of a taut cable where the distance
of the damper attachment point to the end of the cable should be small. On the other hand, it is shown in the
numerical examples of this paper, that fairly high levels of modal damping can be predicted very well, certainly
for the lowest mode of vibration, which is often the mode of interest.

Because of the typical robust character of the modal damping versus the damping constant at the optimal
point, the prediction of the optimal damping constant is not very critical. For the considered numerical
examples of a cantilever beam with attached translational or rotational damper, the approximating formulas
give a good prediction of the optimal damping constant of the first three modes for all possible damper
locations.

The approximate solutions for the complex eigenvalues presented in this paper are very similar to existing
approximations obtained in Refs. [1,3]. A thorough comparison revealed that the new approximations,
obtained with the root-locus method, are applicable in a broader range, without losing simplicity. On the other
hand, it should be mentioned that the method represented in this paper is restricted to a single damper, while
Refs. [1,3] also propose solutions for the case multiple devices are used.
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Appendix A. Stiffness and mass matrices for cantilever beam

The stiffness and mass matrices that appear in the non-dimensional form of the quadratic eigenvalue
problem Eq. (43) of a cantilever beam, discretizated by n finite elements of section length h ¼ l=n are,
respectively,

Kb ¼ n3

K11 þ K22 K12

KT
12 K11 þ K22 K12

. .
.

KT
12 K11 þ K22 K12

KT
12 K22

2
66666664

3
77777775

(A.1)

and

Mb ¼
1

420n

M11 þM22 M12

MT
12 M11 þM22 M12

. .
.

MT
12 M11 þM22 M12

MT
12 M22

2
66666664

3
77777775
, (A.2)

where

K11 ¼
12 6h

6h 4h2

� �
; K12 ¼

�12 6h

�6h 2h2

� �
; K22 ¼

12 �6h

�6h 4h2

� �
(A.3)

and

M11 ¼
156 22h

22h 4h2

� �
; M12 ¼

54 �13h

13h �3h2

� �
; M22 ¼

156 �22h

�22h 4h2

� �
. (A.4)
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